Golang 逃逸分析(Escape Analysis)理解与实践篇

Golang 逃逸分析(Escape Analysis)理解与实践篇

文章目录

      • 1.逃逸分析
      • 2.相关知识(栈、堆、GC分析)
      • 3.逃逸分析综合-实践 demo

逃逸分析(Escape Analysis)是编译器在编译期进行的一项优化技术,是Glang非常重要的性能优化工具。其目的是判断某个变量是否会被函数外部引用,或者超出其作用范围。

1.逃逸分析

如果变量仅在函数内部使用,那么它可以安全地分配在栈上;如果变量“逃逸”到函数外部(例如返回给调用者或者传递给其他协程),编译器会将其分配到堆上,以保证其生命周期不会在栈帧结束时被销毁。

1.返回指针:如果函数返回了局部变量的指针,该变量就会逃逸到堆上。
2.闭包捕获变量:闭包函数中捕获的外部变量也会导致变量逃逸。
3.接口类型的转换:接口转换时,如果具体类型需要被持久化存储,那么它可能逃逸。
4.动态分配的内存:例如使用 new 或者 make 创建的对象,编译器可能会决定将它们分配在堆上。
5.使用 Goroutine :需要特别注意变量逃逸问题。因为 Goroutine 会并发执行,某些变量可能在 Goroutine 中被引用,导致它们逃逸到堆上。

Golang 提供了逃逸分析的工具(编译时查看函数中哪些变量发生了逃逸):

go build -gcflags="-m"

2.相关知识(栈、堆、GC分析)

栈分配:栈是 Go 中快速分配和释放内存的区域。栈上的变量在函数返回时自动销毁,不需要额外的垃圾回收(GC)开销。
堆分配:堆上的内存分配速度相对较慢,且需要依赖 Go 的垃圾回收机制进行管理。频繁的堆分配会导致 GC 的频率增加,从而影响性能。
GC:Go 的垃圾回收器是三色标记清除算法,每次垃圾回收会对堆上的所有对象进行追踪和标记,回收不再使用的内存。

  • 白色(待回收):白色的对象表示未被访问到的对象。在垃圾回收开始时,所有的对象最初都被标记为白色。最终,所有仍然是白色的对象将被认定为不可达的,并在清除阶段被回收。
  • 灰色(待处理):灰色的对象表示已经被垃圾回收器访问到,但其引用的对象还没有完全处理。灰色对象需要进一步追踪其引用的对象。
  • 黑色(已处理):黑色的对象表示已经被处理过,它的引用对象也已经被追踪,不会被再次检查。黑色对象是安全的,表示它们依然在使用,不会被回收。

启用 GC 配置:

export GOGC=50 # 设置 GOGC 为 50,增加 GC 频率,降低内存占用
export GODEBUG=gctrace=1  # GC 运行的详细信息,包括 GC 触发的时机、暂停时间、以及每次回收时清理的内存量

GC 测试 demo:

package main

import (
	"fmt"
	"runtime"
	"time"
)

func main() {
	// 启动一个 Goroutine,持续分配内存,触发 GC
	go func() {
		for {
			_ = make([]byte, 10<<20) // 每次分配 10MB 内存
			time.Sleep(100 * time.Millisecond)
		}
	}()

	// 打印内存使用情况和 GC 次数
	var m runtime.MemStats
	for i := 0; i < 10; i++ {
		runtime.ReadMemStats(&m)
		fmt.Printf("Alloc = %v MiB, Sys = %v MiB, NumGC = %v\n", m.Alloc/1024/1024, m.Sys/1024/1024, m.NumGC)
		time.Sleep(1 * time.Second)
	}
}

3.逃逸分析综合-实践 demo

package main

import (
	"fmt"
	"runtime"
)

// 示例1:返回局部变量的指针
func escapeToHeap() *int {
	a := 42
	return &a // 逃逸到堆上,因为返回了局部变量的指针
}

// 示例2:闭包捕获外部变量
func closureExample() func() int {
	x := 100
	return func() int {
		return x // x 逃逸到堆上,闭包捕获了外部变量
	}
}

// 示例3:接口转换导致逃逸
func interfaceExample() {
	var i interface{}
	i = 42  // 逃逸到堆上,因为 interface 可能会持有较大对象
	fmt.Println(i)
}

// 示例4:动态分配内存
func dynamicAllocation() {
	p := new(int) // 逃逸到堆上,使用 new 分配内存
	*p = 42
	fmt.Println(*p)
}

// 示例5:在栈上分配
func noEscape() {
	x := 42 // 没有逃逸,x 在栈上分配
	fmt.Println(x)
}

// 示例6:Goroutine 中的逃逸分析
func goroutineEscape() {
	x := 42
	go func() {
		fmt.Println(x) // x 逃逸到堆上,因为被 Goroutine 使用
	}()
}

func main() {
	// 打印当前内存使用情况
	var m runtime.MemStats
	runtime.ReadMemStats(&m)
	fmt.Printf("Initial Alloc = %v KB\n", m.Alloc/1024)

	// 测试逃逸分析的各个示例
	fmt.Println("Running escapeToHeap()")
	escapeToHeap()

	fmt.Println("Running closureExample()")
	closure := closureExample()
	fmt.Println(closure())

	fmt.Println("Running interfaceExample()")
	interfaceExample()

	fmt.Println("Running dynamicAllocation()")
	dynamicAllocation()

	fmt.Println("Running noEscape()")
	noEscape()

	fmt.Println("Running goroutineEscape()")
	goroutineEscape()

	// 打印最终内存使用情况
	runtime.ReadMemStats(&m)
	fmt.Printf("Final Alloc = %v KB\n", m.Alloc/1024)
}

编译-逃逸分析

[jn@jn ~]$ go build -gcflags="-m" escape.go
# command-line-arguments
./escape.go:9:6: can inline escapeToHeap
./escape.go:15:6: can inline closureExample
./escape.go:17:9: can inline closureExample.func1
./escape.go:26:13: inlining call to fmt.Println
./escape.go:33:13: inlining call to fmt.Println
./escape.go:39:13: inlining call to fmt.Println
./escape.go:45:5: can inline goroutineEscape.func1
./escape.go:46:14: inlining call to fmt.Println
./escape.go:54:12: inlining call to fmt.Printf
./escape.go:57:13: inlining call to fmt.Println
./escape.go:58:14: inlining call to escapeToHeap
./escape.go:60:13: inlining call to fmt.Println
./escape.go:61:27: inlining call to closureExample
./escape.go:17:9: can inline main.func1
./escape.go:62:21: inlining call to main.func1
./escape.go:62:13: inlining call to fmt.Println
./escape.go:64:13: inlining call to fmt.Println
./escape.go:67:13: inlining call to fmt.Println
./escape.go:70:13: inlining call to fmt.Println
./escape.go:73:13: inlining call to fmt.Println
./escape.go:78:12: inlining call to fmt.Printf
./escape.go:10:2: moved to heap: a
./escape.go:17:9: func literal escapes to heap
./escape.go:25:2: 42 escapes to heap
./escape.go:26:13: ... argument does not escape
./escape.go:31:10: new(int) does not escape
./escape.go:33:13: ... argument does not escape
./escape.go:33:14: *p escapes to heap
./escape.go:39:13: ... argument does not escape
./escape.go:39:13: x escapes to heap
./escape.go:45:5: func literal escapes to heap
./escape.go:46:14: ... argument does not escape
./escape.go:46:14: x escapes to heap
./escape.go:54:12: ... argument does not escape
./escape.go:54:47: m.Alloc / 1024 escapes to heap
./escape.go:57:13: ... argument does not escape
./escape.go:57:14: "Running escapeToHeap()" escapes to heap
./escape.go:60:13: ... argument does not escape
./escape.go:60:14: "Running closureExample()" escapes to heap
./escape.go:61:27: func literal does not escape
./escape.go:62:13: ... argument does not escape
./escape.go:62:21: ~R0 escapes to heap
./escape.go:64:13: ... argument does not escape
./escape.go:64:14: "Running interfaceExample()" escapes to heap
./escape.go:67:13: ... argument does not escape
./escape.go:67:14: "Running dynamicAllocation()" escapes to heap
./escape.go:70:13: ... argument does not escape
./escape.go:70:14: "Running noEscape()" escapes to heap
./escape.go:73:13: ... argument does not escape
./escape.go:73:14: "Running goroutineEscape()" escapes to heap
./escape.go:78:12: ... argument does not escape
./escape.go:78:45: m.Alloc / 1024 escapes to heap
[jn@jn ~]$

run

[jn@jn ~]$ ./escape
Initial Alloc = 187 KB
Running escapeToHeap()
Running closureExample()
100
Running interfaceExample()
42
Running dynamicAllocation()
42
Running noEscape()
42
Running goroutineEscape()
Final Alloc = 190 KB
[jn@jn ~]$

end

1.尽量避免将局部变量的指针返回给外部。
2.使用闭包时注意外部变量的捕获,避免逃逸。
3.尽量减少接口类型和 Goroutine 导致的逃逸。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/890645.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LabVIEW提高开发效率技巧----状态保存与恢复

在LabVIEW开发中&#xff0c;保存和恢复程序运行时的状态是一个关键技巧&#xff0c;特别是在涉及需要暂停或恢复操作的应用中。通过使用 Flatten To String 和 Unflatten From String 函数&#xff0c;开发人员可以将程序当前的状态转换为字符串并保存&#xff0c;再在需要时恢…

决策树随机森林-笔记

决策树 1. 什么是决策树&#xff1f; 决策树是一种基于树结构的监督学习算法&#xff0c;适用于分类和回归任务。 根据数据集构建一棵树&#xff08;二叉树或多叉树&#xff09;。 先选哪个属性作为向下分裂的依据&#xff08;越接近根节点越关键&#xff09;&#xff1f;…

人工智能和机器学习之线性代数(一)

人工智能和机器学习之线性代数&#xff08;一&#xff09; 人工智能和机器学习之线性代数一将介绍向量和矩阵的基础知识以及开源的机器学习框架PyTorch。 文章目录 人工智能和机器学习之线性代数&#xff08;一&#xff09;基本定义标量&#xff08;Scalar&#xff09;向量&a…

机器视觉AI场景为什么用Python比C++多?

好多开发者在讨论机在机器视觉人工智能领域的时候&#xff0c;纠结到底是用Python还是C&#xff0c;实际上&#xff0c;Python 和 C 都有广泛的应用&#xff0c;选择 Python而不是 C 可能有以下一些原因&#xff1a; 语言易学性和开发效率 语法简洁&#xff1a; Python 语法简…

软考系统分析师知识点十:软件工程

前言 今年报考了11月份的软考高级&#xff1a;系统分析师。 考试时间为&#xff1a;11月9日。 倒计时&#xff1a;27天。 目标&#xff1a;优先应试&#xff0c;其次学习&#xff0c;再次实践。 复习计划第一阶段&#xff1a;扫平基础知识点&#xff0c;仅抽取有用信息&am…

【消息队列】Kafka从入门到面试学习总结

国科大学习生活&#xff08;期末复习资料、课程大作业解析、大厂实习经验心得等&#xff09;: 文章专栏&#xff08;点击跳转&#xff09; 大数据开发学习文档&#xff08;分布式文件系统的实现&#xff0c;大数据生态圈学习文档等&#xff09;: 文章专栏&#xff08;点击跳转&…

【C】C语言常见概念~

C语言常见概念 转义字符 转义字符&#xff0c;顾名思义&#xff0c;转变原来意思的字符 比如 #include <stdio.h> int main() {printf("abcndef");return 0; }输出的结果为&#xff1a; 将代码修改一下&#xff1a; #include <stdio.h> int main(…

Web安全常用工具 (持续更新)

前言 本文虽然是讲web相关工具&#xff0c;但在在安全领域&#xff0c;没有人是先精通工具&#xff0c;再上手做事的。鉴于web领域繁杂戎多的知识点&#xff08;工具是学不完的&#xff0c;哭&#xff09;&#xff0c;如果你在本文的学习过程中遇到没有学过的知识点&#xff0…

《OpenCV计算机视觉》—— 人脸检测

文章目录 一、人脸检测流程介绍二、用于人脸检测的关键方法1.加载分类器&#xff08;cv2.CascadeClassifier()&#xff09;2.检测图像中的人脸&#xff08;cv2.CascadeClassifier.detectMultiscale()&#xff09; 三、代码实现 一、人脸检测流程介绍 下面是一张含有多个人脸的…

了解高可用架构之前——CAP

CAP定理(布鲁尔定理)&#xff0c;在2000年的ACM PODC上提出的猜想 &#x1f4d3;1 CAP理论 理论描述 第一版&#xff1a;any distributed system cannot guaranty C,A and P simultaneously 对于一个分布式计算系统&#xff0c;不可能同时满足一致性(Consistence)、可用性(Ava…

环境、能源主题会议,斯普林格/ IEEE 出版

&#x1f31f;第四届环境污染与治理国际学术会议 (ICEPG 2024) ✅收录率高&#xff0c;EI稳定检索 【往届见刊后1个月内完成检索】 ✅华北水利水电大学主办&#xff0c;院士、校长、杰青等大咖齐聚 ✔会议时间&#xff1a;2024年10月25-27日 ✔会议地点&#xff1a;郑州东站…

苹果AI科学家研究证明基于LLM的模型存在缺陷 因为它们无法推理

苹果公司人工智能科学家的一篇新论文发现&#xff0c;基于大型语言模型的引擎&#xff08;如 Meta 和 OpenAI 的引擎&#xff09;仍然缺乏基本的推理能力。该小组提出了一个新的基准–GSM-Symbolic&#xff0c;以帮助其他人衡量各种大型语言模型&#xff08;LLM&#xff09;的推…

常见开源组件的详解

文章目录 RPCRPC架构和工作流程为什么有了HTTP还要用RPC底层协议数据格式连接管理错误处理 使用场景常见的RPC框架 Web应用框架主要功能常见的Web应用框架Spring Boot (Java)Django (Python)Express.js (Node.js) Redis主要特点应用场景缓存问题Redis集群架构主从复制Redis Clu…

Fiddler配合wireshark解密ssl

环境&#xff1a; win11&#xff08;wireshark&#xff09;--虚拟机win7&#xff08;Fiddler&#xff09;---虚拟机win7&#xff08;HTTPS站点&#xff09; 软件安装问题&#xff1a; 需要.net环境&#xff0c;NDP461-KB3102436-x86-x64-AllOS-ENU.exe。 安装fiddler后安装下…

Excel:vba实现合并工作表(表头相同)

这个代码应该也适用于一些表头相同的工作表的汇总&#xff0c;只需要修改想要遍历的表&#xff0c;适用于处理大量表头相同的表的合并 这里的汇总合并表 total 是我事先创建的&#xff0c;我觉得比用vba代码创建要容易一下&#xff0c;如果不事先创建汇总表就用下面的代码&…

chattts一步步的记录,先跑起来。

0.下载git工具 Git - Downloads (git-scm.com)https://git-scm.com/downloads Download – TortoiseGit – Windows Shell Interface to Githttps://tortoisegit.org/download/ 1.安装 随意&#xff0c;可以安汉化&#xff0c;也可不安。无所谓 2.建个目录&#xff0c;我的上…

qiankun 主项目和子项目都是 vue2,部署在同一台服务器上,nginx 配置

1、主项目配置 1.1 micro.vue 组件 <template><div id"container-sub-app"></div> </template><script> import { loadMicroApp } from qiankun; import actions from /utils/actions.js;export default {name: microApp,mixins: [ac…

python+appium+雷电模拟器安卓自动化及踩坑

一、环境安装 环境&#xff1a;window11 1.1 安装Android SDK AndroidDevTools - Android开发工具 Android SDK下载 Android Studio下载 Gradle下载 SDK Tools下载 这里面任选一个就可以&#xff0c;最终下载完主要要安装操作安卓的工具adb&#xff0c;安装这个步骤的前提是要…

防火墙的三种工作模式:路由模式、透明模式(网桥)、混合模式

防火墙作为网络安全的核心设备之一&#xff0c;扮演着至关重要的角色。它不仅能够有效防御外部网络的攻击&#xff0c;还能保护内部网络的安全。在如今复杂多样的网络环境下&#xff0c;防火墙的部署和工作模式直接影响着网络安全策略的实施效果。防火墙通常可以工作在三种模式…

如何成为 Rust 核心贡献者?Rust 开发的核​​心是什么?Rust 重要技术专家揭秘

10 月 17 - 18日&#xff0c;由 GOSIM 开源创新汇主办、CSDN 承办的 GOSIM CHINA 2024 将在北京盛大启幕。作为 GOSIM 开源年度大会的第三届盛会&#xff0c;本次活动邀请了 60 多位国际开源专家&#xff0c;汇聚了来自全球百余家顶尖科技企业、知名高校及开源社区的技术大咖、…